ADCAMAT PRESSURE OPERATED PUMP PPA14 ### DESCRIPTION The ADCAMAT PPA (Pressure Operated Pump), fabricated in carbon steel (stainless steel on request), is recommended in the transfer of high temperature liquids such as condensate, oils and others, to a higher elevation or pressure. Under certain conditions, it can drain a closed vessel under vacuum or pressure. The pump can be operated by steam, compressed air or other gases, and can be used for lifting any kind of non-corrosive liquids. ### **OPERATION** Liquid flows by gravity into the pump through an inlet check valve lifting a float which, at the upper limit of its stroke, opens the supply valve, allowing steam or compressed air to enter the pump's body. Pressure in the pump builds up until it's just sufficient to overcome back pressure. The pressurized liquid opens the outlet check valve and discharge begins. When the float reaches the minimum lower level, it closes the steam or compressed air supply valve and opens the vent, allowing the liquid to fill the pump again. As the amount of liquid discharged at each stroke is known, the total volume that flows during a given period of time can be calculated by counting the number of cycles during that period. For that purpose, a special counter is available which screws into a tapped connection on the top cover of the pump. This counter records the number of pumping strokes, thus enabling the pump to function as a reliable flow meter. | ΝЛ | Λ | ı | I A | |-----|---|---|-----| | IVI | н | | IVI | FEATURES: No electric requirements. OPTIONS: Duplex packaged design. Stainless steel construction. Level gauge. Stroke counter. USE: To lift hot condensate or other liquids. **AVAILABLE** MODELS: PPA14 - carbon steel (sandblasted, metalized and black painted). SIZES: DN 80 x 50. CONNECTIONS: Flanged EN 1092-1 PN 16. Flanged ASME B16.5 class 150 lb. Female threaded ISO 7 Rp. Special flanges on request. INSTALLATION: Horizontal installation. See IMI - Installation and maintenance instructions. MOTIVE GAS: Steam or compressed air. | LIMITING CONDITIONS | | | | | | |--------------------------|-----------|--|--|--|--| | Minimum density | 0,80 kg/L | | | | | | Maximum viscosity | 5 ºEngler | | | | | | Maximum motive pressure | 10 bar | | | | | | Minimum motive pressure | 1 bar | | | | | | Pump discharge per cycle | 25 L | | | | | | | VI. | | |--------------|--------------------|------------------------| | | ALLOWABLE PRESSURE | RELATED
TEMPERATURE | | PN 16 | 16 bar | 50 °C | | | 15 bar | 100 °C | | | 12,7 bar | 200 °C | | | 12 bar | 250 °C | | CLASS
150 | 16 bar | 50 °C | | | 12,6 bar | 200 °C | Min. operating temp.: -10 °C; Design code: ASME VII. ^{*} Rating according to EN 1092-1:2018. | CE MARKING – GROUP 2
(PED – European Directive) | | | | | | |--|---------------|--|--|--|--| | PN 16 | Category | | | | | | DN 80 x 50 | 3 (CE marked) | | | | | | | DIMENSIONS (mm) | | | | | | | | | | | | | | |------------|-----------------|-------------------|------------|-------------------|-----|-----|-----|-----|-----|----|----|-----|-------------|-------------| | SIZE | A
PN 16 | A
CLASS
150 | B
PN 16 | B
CLASS
150 | С | D | E | F | Н | J | L | М | WEIGHT (kg) | VOL.
(L) | | DN 80 x 50 | 775 | 847 | 580 | 616 | 113 | 665 | 406 | 200 | 642 | 30 | 30 | 435 | 123 | 68 | ^{*} A – with welding neck EN 1092-1 flanges. Dimensions are different if threaded flanges are requested. | | MATERIALS | | | | | | | |---------|---------------------------------|---|--|--|--|--|--| | POS. Nº | DESIGNATION | MATERIAL | | | | | | | 1 | Pump body | P265GH / 1.0425; P235GH / 1.0345; S235JR / 1.0038 | | | | | | | 2 | Cover | GJS-400-15 / 0.7040 ; A216 WCB / 1.0619 | | | | | | | 3 | * Cover gasket | Non asbestos | | | | | | | 4 | * Inlet valve / Seat assembly | Stainless steel | | | | | | | 5 | * Exhaust valve / Seat assembly | Stainless steel | | | | | | | 6 | Internal mechanism | Stainless steel | | | | | | | 7 | * Float | Stainless steel | | | | | | | 8 | * Spring assembly (2 pieces) | Inconel | | | | | | | 9.1 | * RD40 outlet check valve | A351 CF8M / 1.4408 | | | | | | | 9.2 | * RD40 Inlet check valve | A351 CF8M / 1.4408 | | | | | | | 10 | Bolts | Steel 8.8 | | | | | | | 11 | ** PN16 EN 1092-1 flanges | P250GH / 1.0460 | | | | | | ^{*} Available spare parts. ## STROKE COUNTER Available on request, it can be screwed directly into the top cover of the pump or above the pump, through a 1/2" size pipe for easier reading (max. 1 m). ^{**} Welding neck EN 1092-1:2018 flanges. Threaded flanges on request. ### SIZING AND INSTALLATION ### SIZING OF THE SYSTEM The discharge capacity of the pump is a function of: - 1. Condensate load (kg/h). - 2. The pressure of the operating medium (steam, compressed air or other gases). - 3. The total lift or back pressure the pump will have to overcome. This includes the change in fluid level elevation after the pump (0.0981 bar/m of lift), plus pressure in the return piping, plus the pressure drop in bar caused by pipe friction, plus any other system component pressure drop the pump exhaust will have to overcome (barg). - 4. Filling head available (300 mm is recommended). ## INSTALLATION Fig.1 shows a typical installation example of an ADCAMAT pump. For further details and instructions, please contact manufacturer. | MATERIALS | | | | | | | |-----------|-------------|------|-----------------------|--|--|--| | POS. | DESIGNATION | POS. | DESIGNATION | | | | | 2 | Receiver | 5 | Pump | | | | | 3 | Ball valve | 6 | RD40 disc check valve | | | | | 4 | Strainer | 7 | Steam trap | | | | Table 1 ## RECEIVER A receiver is recommended to temporarily hold the liquid and prevent any flooding of the equipment, while the pump is performing a pumping cycle. A length of pipe of large diameter can be used. | SUGGESTED RECEIVER | | | | | | |--------------------------------|------------|--|--|--|--| | PUMP SIZE DN 80 x 50 | | | | | | | Receiver size
Diam x lenght | 323 x 1000 | | | | | Table 2 | CAPACITY CORRECTION FACTOR FOR GASES OTHER THAN STEAM | | | | | | | | |---|------|------|------|------|------|--|--| | % Backpress. vs 10% 30% 50% 70% 90% Motive press. (BP/MP) | | | | | | | | | Correction factor | 1,04 | 1,08 | 1,12 | 1,18 | 1,28 | | | Table 3 | CAPACITY MULTIPLYING FACTORS FOR OTHER FILLING HEADS | | | | | | | | |--|----------|--|--|--|--|--|--| | PUMP SIZE | EAD (mm) | | | | | | | | 150 300 600 900 | | | | | | | | | DN 80 x 50 0,9 1 1,08 1,2 | | | | | | | | Table 4 #### FLOW RATE (kg/h) INSTALLATION WITH 300 mm FILLING HEAD ABOVE THE PUMP COVER | MOTIVE PRESSURE
(bar) | TOTAL LIFT
(bar) | DN 80 x 50 | |--------------------------|---------------------|------------| | 1 | | 3710 | | 1,7 | | 5470 | | 3,5 | 0,35 | 5820 | | 5 | 0,33 | 5970 | | 7 | | 6010 | | 10 | | 6290 | | 1,7 | | 3570 | | 3,5 | | 5160 | | 5 | 1 | 5360 | | 7 | | 5470 | | 10 | | 5790 | | 2,5 | | 3435 | | 3,5 | | 4835 | | 5 | 1,5 | 4980 | | 7 | | 5080 | | 10 | | 5390 | | 3,5 | | 2890 | | 4 | | 3440 | | 5 | 3 | 3780 | | 7 | | 4040 | | 10 | | 4430 | | 4,5 | | 2505 | | 5 | 4 | 2680 | | 7 | 4 | 2990 | | 10 | | 3385 | Table 5 (based on liquid specific gravity 0,9 - 1,0). Filling head measured from the bottom of receiver to top of pump cover. ## **Example:** Condensate load 3500 kg/h Filling head 150 mm Compressed air Motive fluid Available pressure 7 bar Vertical lift after pump 10 m Return piping pressure 1,2 bar Negligible Piping friction pressure drop ## Calculations: Total back pressure: $1,2 \text{ bar} + (10 \text{ m} \times 0,0981) = 2,181 \text{ bar}$. Pump choice, assuming steam as motive fluid, at a pressure of 7 bar and a back pressure of 3 bar: the DN 80 x 50 pump has a capacity of 4040 kg/h, according to Table 5, so it is the one we should select. ## **Correction for filling Head:** With 150 mm filling head the correction factor from Table The % back pressure 2,181 bar / 7 bar = 31% 4 is 0,9. The corrected capacity is: $4040 \text{ kg/h} \times 0.9 = 3636 \text{ kg/h}.$ ## Correction for air as a motive fluid: The correction factor from table 3, is 1,08. The corrected capacity is $3636 \text{ kg/h} \times 1,08 = 3926,88 \text{ kg/h}$, and so, the DN 80 x 50 pump is still recommended. ## **TYPICAL APPLICATIONS** #### Condensate recovery - open system The pump removes high temperature condensate without cavitation problems. WARNING: Vent line must be unrestricted and self draining to the receiver. | | MATERIALS | | | | | | | | |------|----------------|------|-----------------------|--|--|--|--|--| | POS. | DESIGNATION | POS. | DESIGNATION | | | | | | | 1 | Heat exchanger | 5 | Pump | | | | | | | 2 | Receiver | 6 | RD40 disc check valve | | | | | | | 3 | Ball valve | 7 | Steam trap | | | | | | | 4 | Strainer | 8 | Air vent | | | | | | ## Removal of condensate under pressure with ADCAMat pump and steam trap combination When the steam pressure is sufficient to overcome back pressure, the trap operates. If the pressure decreases, then the pressure operated pump starts to work, removing the condensate by pumping through the float steam trap. # Drainage of a single unit under vacuum (max. 0,2 bar abs) Head H1 must range between 1 and 2 m. The lift H must be as minimum as possible, but never less than 1 m (otherwise a siphon is required, as shown in H2). Use steam as operating medium (max. pressure 2 – 3 bar).