

ADCATHERM BOILER FEED TANKS **BFT**

DESCRIPTION

The BFT boiler feed tank is one of the most important devices in a boiler room. Its main function is to store the make-up water and condensate, assuring a reserve of treated water to supply to the steam boilers

The make-up water has to be softened to prevent scale formation on the boiler and the oxygen also has to be removed, so that corrosion in the boiler and steam system is avoided (this situation is normally handled by specialists).

The consumption of chemicals used to eliminate the oxygen can be drastically reduced if you use one of the several ADCATherm thermal degasification processes (ADG, TDG, FCD) for the removal of oxygen and other non-condensable gases (mainly carbon dioxide).

Even if you choose not to use one of the mentioned systems, the ADCATherm boiler feed tanks will always be optimized according to the existing needs, therefore being able to include water preheating, as well as other features obvious to a true steam expert, but not to a simple tank manufacturer.

Sandblasted and metalized internally and externally (externally painted).

Prevents energy wasting.

Can be installed on new or existing systems.

OPTIONS: Vertical and special designs for different

applications.

Complete stainless steel construction.

Complete system including all the necessary

equipment.

Vent condenser for energy recovery.

USE: Steam boiler feed water.

AVAILABLE

BFT – standard horizontal design. MODELS:

BFT/ADG or TDG - vessel and correspondent

deaerator dome.

BFTV - special vertical design.

CONNECTIONS: Flanged EN 1092-1 or ASME.

ISO or NPT threaded sockets. Different connections on request.

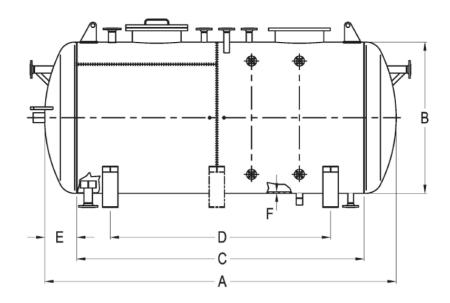
CONSTRUCTION: Carbon steel with internal stainless steel

components.

INSTALLATION: See ADG/TDG catalogues for typical installations.

Standard horizontal install. Vertical on request. Final dimensions and connections according to the drawing supplied after order confirmation. Insulation (not included) recommended after

installation.

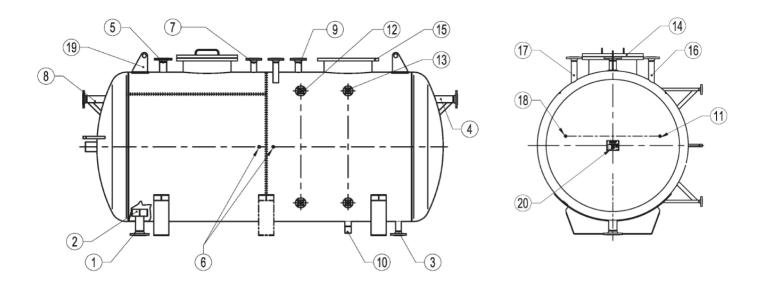

LIMITING CONDITION	s
PS – Maximum allowable pressure	0,5 bar
TS – Maximum allowable temperature	120 °C

Minimum operating temperature: -10 °C;

Design code: AD-Merkblatt.

Remark: other conditions and CE marking on request.

DIMENSIONS (mm)								
MODEL	CAPACITY (L)	А	В	С	D	E	F	WEIGHT (kg)
BFT-500	537	1800	640	1500	900	150	4	180
BFT-750	856	1860	800	1500	900	180	5	290
BFT-1000	1107	2360	800	2000	1200	180	5	350
BFT-1250	1336	1920	960	1500	900	210	5	360
BFT-1500	1698	2420	960	2000	1200	210	5	410
BFT-2000	2248	2480	1080	2000	1200	240	6	570
BFT-2500	2706	2980	1080	2500	1500	240	6	665
BFT-3000	3068	2560	1280	2000	1200	280	7	795
BFT-3500	3711	3060	1280	2500	1500	280	7	920
BFT-4000	4176	2660	1500	2000	1200	330	8	1160
BFT-5000	5060	3160	1500	2500	1500	330	8	1335
BFT-6000	5943	3660	1500	3000	1800	330	8	1510


Remarks: approximate dimensions. Consult manufacturer for certified dimensions. Pipe connections and location approved after order confirmation.

MATERIALS		
DESIGNATION	MATERIAL	
Cylindrical shell	EN 10025 / S235JR / 1.0038	
Domed ends	EN 10025 / S235JR / 1.0038	
Inlet/outlet pipes	EN 10216-2 / P235GH / 1.0345	
EN flanges	EN 10222-2 / P250GH / 1.0460	
ASME flanges	ASTM A105 / 1.0432	
Sockets	ASTM A105 / 1.0432	
Internals	EN 10028-7 / AISI 316 / 1.4401	
Supports	EN10025 / S235JR / 1.0038	
Bolts	Steel 8.8	

FN 10204 3 1	certificate available on req	uest
LIN 10204 3.1	certificate available off fed	ucsi.

THERMAL DEAERATOR DATA INQUIRY		
Make-up water pressure	bar	
Make-up water temperature	°C	
Make-up water flow rate	kg/h	
Condensate return pressure	bar	
Condensate temperature	°C	
Condensate flow rate	kg/h	
Saturated heating steam pressure	bar	
Feed water tank required capacity	m3	
Max. dearated water flow required	kg/h	

	CONNECTIONS *		
POS. N°	DESIGNATION	REMARKS	
1	Boiler feed pump supply	Larger diameter to optimize pressure loss (preventing cavitation)	
2	Anti vortex	-	
3	Drain	To be connected to a BEX (always at a lower level than the feed tank)	
4	Overflow	Float trap or "U" bend (only for atmospheric)	
5	Heating steam	Can be located at the domed ends	
6	Chemical dosing	Can be located at the domed ends	
7	Condensate return	Only if not connected to a dearetor dome	
8	Soft water inlet	Only if not connected to a dearetor dome	
9	Vent outlet	Only if not connected to a dearetor dome	
10	Recirculating pump	Recommended for atmospheric design only	
11	Temperature indicator	Can be located at the domed ends	
12	Level indicator	Can be located at the domed ends	
13	Level controller	Can be located at the domed ends	
14	Headhole	DN 300 PN 6 up to 1000 L	
14	Manhole	DN 500 PN 6 for 1250 L and above	
15	Dome flange	For ADG or TDG	
16	Vacuum valve	For pressurized systems only	
17	Safety valve	For presurized systems only	
18	Temperature control	Suitable for electrical or self operated valve control	
19	Lifting eyes	-	
20	Name plate	-	

^{*} Sizes to be defined according to the real flow conditions.